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• When a perturbation is made to the reactor properties, the steady
state no longer holds, and the evolution 'of the neutron flux must be
obtained from the time-dependent diffusion equation.

o The effect of local perturbations on qi..r,E,t) will quickly propagate. In
many cases, there is a slight re-adjustment of the flux shape in a few
milliseconds, after which the global flux level wiil increase or decrease,
depending on whether the perturbation has increased or decreased
kett..

• When the flux shape varies little or slowly, one can predict accurately
the evolution of the total reactot power as a function of the changes
brought by the perturbation to the average reactor properties,
neglecting completely the shape changes. This is the point-kinetics
approximation..

~~(r,E,t) = (Fp -M) ¢(r,E,t) + Sd(r,E,i) + S(I',E,t)

with:

Fp¢ ~ Xp(E)( vp Elr,E' ,I)¢(r,e ,1)dE

M!j7 = - v· DV¢ + It¢ - Joo SsV,E ~,t)?V,E' ,t)dE
o .

S = arbitrary independent source

with:

~ ~ - A-kC&,t) + (dE v</kEj(r,e ,1)¢6-,E' ,1)

(k = 1, 2... K)
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Flux Factorization

• In order to take advantage of the fact that the flux shape can vary
more slowly than the amplitude, we introduce the following
factorization:

¢(r,E,t) = p(t) 1f/(r,E,t)

• Substitution of this factorized form in the diffusion equation leads to a
new equation for the shape function tp, After dividing by p{t), we find

1( 1 dp 8 1f/ I] 1v~(jj ljJ{r,E,f) + 8i(r,E,f) = Fp - MIf/(r,E,t) + p(t) Sd(r,E"f)

• This equation will be coupled to a second equation for the amplitude
p(t).

• This formulation is quite general. The advantage is that the shape tp
varies much more slowly with t than the amplitude p(t). This permits
an integration step for tp much larger than that used to calculate the
amplitude p. The separate solution of the shape and amplitude
equations can lead to substantial machine-time savings.

• The equation for the amplitude is obtained by integrating the diffusion
equation over the domain (r,E). Since every point in the domain may
not hav~ the same importance, we first multiply the diffusion equation
by an arbitrary time-independent weighting function. w{r, E), defined
over the same domain as ¢.
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·3 - The Point Kinetics Equations

Amplitude EQY.ation

• In analogy with the steady-state production operator, we define the
following operator F in the time-dependent case:

Fr/Jef,E,f) = (Fp + Fd)¢(r,E,f)

• The operator Fp represents the instantaneous source of prornpt
neutrons (at time t). With the previous factorization, we get

Fpr/J(r,E,t) = p(t) Zp(E) fcc dE' vpIf(f,E',f) /fI(f,E,f)
• 0

= p' Fp /fI

• The operator Fd does not represent the instantaneous source of
delayed neutrons. It is the source of delayed neutrons which would be
found at equilibrium at (r,E) if the reactor were in st~ady-state with the
instantaneous flux ~r,E,t).

,

= pet) L Xdk(E) fcc dE VdkIjV,e,t) /fIV,E' ,f)
k 0

= P'L Fdk IfI
k

• Substituting in the diffusion.equation, we find:

• Introducing the factorization ¢=p lj/, multiplying by an arbitrcuy wieght
functionw{r,E) and integrating over the domain, we find the following
equation for the amplitude p(t):

Iw v-11/,'. dp + Iw v-10/fl\.p 'w (F M F. ... 'p + 'w S \ + 'w S'
\ I Y' I dt \ I a I =" - - d) '1/1' \ I d I \, I
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tillJplitude Equation (cant'd) ·

• Delayed-neutron source term contains a weighted sum of precursors:

• pre-multiplying the precursor equation by Xd~E), multiplying the result
by w(r,E), and integrating over the domain, we find:

• We now define the following scalar quantities to simplify the notation:

I C \
Ck (t) = ,W'%dk kJ

Iw V-
1lf/'

" I

Iw v-1 Ovt\
qV/(t)

\ I a I
=

I -1',W, v If/I

se(f)
(w,S)

=
Iw V-

1lf/'
" I

4

• We find:
dp
dt

and

K
= (ap(t) - af3(t) - qV/(t)p(t) + L AJ<Ckq) + se(t)

k=1

~ = apk(t)-p(t) - (Ak+qV/(t)}Ck(t)

(k= 1, 2... K)
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~IitudeEquation (cont'd)

• The following kinetics parameters have been introduced:

" ) (WI (F -M)V/)
apv = / 1 \W v- III

\ I T I
and

K

ap(t) = 'LaPk(t)
k=1

K 'w F 'P'\
= " \ ' dk I

L. I -1 \
k=1 \ W, v If'J

•. We nute that no approximation has been made to this point.

• In place of the time-dependent diffusion equation, coupled to the
precursor equations, we have after factorization a system of coupled
equations consisting of an equation for the shape function and the
amplitude equations. These two systems are entirely equivalent.

• In the quasi-static method, the shape equation is solved over macro­
intervals, within which the amplitude equations are separately
integrated, using a known shape. The factorization thus introduces an
additional degree of freedom, which can be used to simplify the
numerical solution of the time-dependant diffusion equation.
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The Normalization Constraint

• We note also that the relative normalization of p and lj/ is arbitrary,
since both these quantities are functions of. time. In the absence of a
normalization constraint, all solutions of the following form must be
allowed: .

(J(r,E,t) = P(t)'IfI(r,E,t)

~ (P(t) 8(1)) -( V!~(~,t)J

= p(t)- ;;(r,E,t)

• In order to make the relative normalization unique and to transfer as
much as possible of the time variation from ¢ to the amplitude, we will
Impose:

J -1 \ /w(r,E) rt/(r,E,t)\ K
,W,V '1/1 = \ V (E) I = 0

where Ko is an arbitrary constant. As a consequence, we note:

~ 'fI(f) = 0

• The amplitude equations then become:

and

I~ = ap. (t). p(f) - Ak ck (I)I
(k = 1,2... K)
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The Point Kinetics AQProximation

• The normalization constraint does not constitute an approximation:

The simultaneous solution of amplitude equations together with the above
normalization constraint on IjI, affects the value of p but not of the product t/J ='
P1fI, which is conserved.

• The solution of ¢ is independent of the choice for the weighting
function w:

The use of an arbitrary weight function gives an additionnal degree of freedom.
We may then seled a particular function W to best serve our purpose.

OBSERVATIONS:

- The amplitude equation for pet) is a set of ordinary differential
equations, much easier to solve that the shape equation (fOr" If/(t)
) or the original diffusion equation (for ¢J(t) ), which are second
order partial differential equations.

- The amplitude equation yielding p(t), a quantity proportional to
the total neutron power, is controlled by only two kinetics
parameters, namely ail) and ait), which depend on the nuclear
properties of materials within the.domain.

OBJECTIVE:

Our objective is to decouple the amplitude equation from the shape
equation, so that we can estimate simply the reactor response to
localized perturbations.
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The Point Kinetics Agproximation (cont'd)

APPROXIMATION:

The central approximation in point kinetics is to assume that the
. shape function lj/ used to calculate the kinetics parameters is
constant. It is usually equal the initial steady-state flux distribution.

• The initial steady-state flux distribution, rPo(r,E), is normally obtained by
solving (once) the static diffusion equation with a detailled model of the
reactor.

• If, in reality, the localized perturbation does not affect significantly the
flux shape, we can the expect that the solution to the point kinetics
approximation, p(t) , will provide a reasonably accurate prediction of the
total reactor power transient.

• With the introduction' of this approximation, we now allow a difference
between the approximate flux shape, rPo, used to calculate the
amplitude, and the real time dependant flux shape, lj/. It will thus be
advantageous to choose a weighting function which minimizes the
error in p(t) due to the uncertainty in the shape, Olj/ = tPo - 'If.
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Conventional Form of the Point-Kinetics Equations

(Initially Critical Reactor)

• At initial steady state, we have:

where, in principle, Ao =1 since the reactor is assumed critical.

• We shall choose the initial adjointflux, ¢~ I for the weighting function:
*w(r,E) = ¢o (r,E)

Reason: the error committed as a result of using the initial shape to calculate
the kinetics parameter is of second order in the shape error, as long as the
initial adjoint flux is used as weighting function;

• While the amplitude equation contains in reality only two kinetics
parameters, the· conventional fprm of the point-kinetics equations
shows three parameters, by explicitly including the dynamic reactivity
as one parameter in the equation.

• Dynamic reactivity is defined, by analogy to the static reactivity
introduced earlier:
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The Point Kinetics Parameters

• Multiplying and dividing the first kinetics parameter yields:

• We have in this way separated the parameter into two components l

the dynamic reactivity p(t) and a new parameter) A(t), which we shall
call the mean prompt-neutron lifetime:

A¢)

• Treating second the parameter in a similar fashion, we find

1*\ J 11 \

apk (t)
\ rPo. Fdk ¢o I \¢o.F¢o/

= /11\ I 11 -1 \
\tPo.FtPo/ \ tPo. v (Jo I

v '-----v---'
Pk(!) 1/A(t)

• We have in this way introduced the new parameter p"t), which we shall
call the effective delayed-neutron fraction:
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The Point Kinetics Parameters (cont'd)

• Dynamic reactivity p(t) has·no units. It is generally a small number, so
that it is conventional ~ use the (non-physical) units· mk, which are
simply fractions of 0.001

• p(t) varies rapidly and significantly when the reactor is perturbed
(control rod movements, refuellings, temperature and density
changes, ...)

• On the other hand, over the short time horizon of the transients
considered in reactor kinetics, we can often neglect the time variation
of P(t) and A(t).

• A has units of time (s). It measures the length of time it takes for an
average neutron to reproduce itself via the fission chain reaction (Le.
the neutron generation)

• P is the effective delayed neutron fraction. It is a weighted average and
accounts for the non-uniform distribution of fissile material in the
reactor and the different delayed neutron emission spectra.

• Typical values:

CANDU LvVR frAAPLl=
(heavy water) (iir'!/){ wafed (resesrcll)... t ~l . . , ...),..

A A10-3 S A10-4s AO.7x10-4 S

fJ AO.OOS9 AO.OO7S AO.OO82
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The Point Kinetics Equations

• In the absence of an external source, the conventional. form of the
kinetics equations is therefore the following:

dp (t)
dt

dCk (t)
dt

::= - AkCk (t) + A pet)
A

(k = 1,2... K)

• An alternate form of the P.K. equations can be written, if we choose the
following variable for the delayed precursor concentration, instead of
Ck(t)

~k (t)

Then we have:
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Point Kinetics (conclusions)

• The Point Kinetics equations are simple;

• They can be solved analytically in the case of constant reactivity;

• The PK parameters correctly characterize the reactor and can be
obtained in a straight-forward manner:

- rough estimate (survey calculations),

- . detailled estimate starting from a complete description of a reactor
and a steady-state solution of the diffusion equation (engineering
calculations); .

• If reactivity varies (as it generally does during a transient), the PK
equations are easily solved numerically (on personnal computers);

• Point Kinetics calculation are very useful in control and safety
studies, because feedback effects can easily be modelled;
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• Because the approac/1 is approximate (assumption of constant flux
shape), caution must be used. Validation with detailed space-time
kinetics methods (time-dependent diffusion equation in 3D).
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